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The evaluation of the modified Bessel function of the third kind of purely imagi-
nary orderKi, (x) is discussed; we also present analogous results for the derivative.
The methods are based on the use of Maclaurin series, nonoscillatory integral rep-
resentations, asymptotic expansions, and a continued fraction method, depending
on the ranges aof anda. We discuss the range of applicability of the different ap-
proaches considered and conclude that power series, the continued fraction method,
and the nonoscillatory integral representation can be used to accurately compute the
function K, (x) in the range O< a < 200, 0< x < 100; using a similar scheme the
derivativeK;, (x) can also be computed within these ranges.2002 Eisevier Science (UsA)

Key WordsBessel functions; series expansions; continued fraction; nonoscillatory
integral representations; asymptotic expansions.

INTRODUCTION

The modified Bessel functions of the third kind of purely imaginary okigrx) appear
in the radial solution of the Schroedinger equation for exponential potekt{ajs= Vo, —
Ae /2 [2, 11], with r the distance from the center of force, and in the calculation ¢
guantum mechanical cross sections and reaction rates for electron impact excitation of
and neutrals [2]. Also, the Dirichlet problem with boundary conditions on a wedge is solv
in terms of integrals which require the evaluationkgf (x) for a wide range of positiva
anda [12]. BesidesKia(X) is the kernel of the Kantorovich—Lebedev transform [12] anc
plays an important role as approximant in uniform asymptotic expansions of solutions
certain second-order linear differential equations [5, 6].

In the literature several approaches to the evaluatioK;gfx) can be found ([2, 3,
7, 9-11]), which are mainly based on integral representations. In [16t-tnethod is
used for computing the related functiét »ig (x), with X, g € (0, 10]. A major problem
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when using integral representationskof, (x) is the control of the relative accuracy. The
function becomes exponentially small wherand/ora become large, and the standard
integrals oscillate strongly. In [11] an approach is discussed based on shifting the contot
integration into the complex plane, which gives some control on the cancellations. We b
our quadrature method on integrals obtained by the saddle point method (see [18]), w
do not oscillate. Moreover, the dominant exponential terms that describe the asympt
behavior ofK;, (x) are explicitly present in the representations we are using.

In this paper, we discuss methods based on the use of series expansions, conti
fractions, and nonoscillatory integral representations, depending on the rangesdf
a and the numerical efficiency of the different approaches. We develop algorithms
computing the functio;, (x) andK;, (x), aiming at a relative precision of nine significant
digits, in the range & a < 200, 0< x < 100.

COMPUTATIONAL ASPECTS

Our method of evaluation df;, (x) andK/, (x) is based on:

1. Series expansions for moderate values/af,

2. Asymptotic expansions for large valuesxof

3. A continued fraction method for moderate values 0f, and

4. Nonoscillatory integral representations where all the three previous methods fail.

Let us now describe in detail each of these approaches. Later, we will describe the reg
of numerical validity and the performance of the combined algorithm.

Series Expansion

Series expansions féf;, (x) andK/, (x) can be built which properly handle the singularity
atx = 0. The idea, as in [19], is to relat€, (x) with 1, (x) by

/g
Ky(X) = m[Lu(X) - 1L, ()] (1)
and use series expansions for thieinctions to obtain the expression
K,(X) = ch f, (2
k=0
which together with
V
K;(X) = ;KU(X) - Kv+1(x) (3)
gives
K100 = 23 okt - @)
v =X k | KTk — S0
k=0
where
foo_ T x/™  (X/2) )
“7 2sinr [Tk+1-v) T(k+1+v)]

(6)

oo TV x/2)7" (x/2)"
k_zgmm[rm+1—u) rw+1+uJ’
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and

x2\*1  x2ceq
R (4> K~ 2 k @

The following three-term recurrence relation fgrcan be established:
(K — vA)r — (2K — Dry_g + re_ = 0. (8)

The same recurrence relation applies fprPerron’s theorem [8, 17] is inconclusive with
respect to the existence of minimal solutions for this recurrence. We are using suc
recurrence to evaluate the coefficient&nd then we use

_ kfier e Ko + e
- k2 — 2 - k2+a2

fi 9)
where we have set = ia. Notice that the evaluation of the coefficients for imaginaig
not so restricted as in the case of reakor realv, singularities in Egs. (5), (6), and (9) are
present which disappear for imaginaryfFor real orders, these series expansions converg
for |v] < 1 [19]; there is no such restriction for imaginary

In order to evaluatg, and fy, one needs the starting valuds; ro, andr;. Settingy = ia
we have

B 7 x/2* (/™"
fo=—Ssinhra Fl+ia) TI'd—ia)] (10)
Writing
F(1+ia) = |T(1+ia)e”®, TIr@d-ia)=|"1—ia)e @, (11)

whereoy(a) is the Coulomb phase shift [4], we get

T .
fo = \/%sm[aln(xﬁ) — op(@)], (12)
o= \/ﬁcos[aln(x 2) @]
°= Y\ sinhra /2~ oo@],

1 ma .
ry= T1az\ / m{cos[ln(x/Z) —op(@)] + asinfaln(x/2) — op(@)]}. (13)

For the computation afy, one can use the parameterization given in [4].

and similarly

Asymptotic Expansion

For large values of, one has the asymptotic expansion

7\ Y2 _x > (v, m)
K, (X) ~ (2)() e*> Zon (14)

k=0
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where(v, m) is the Hankel symbol given by
(v, m) l(1)mcosl“l+ +m1“l +m
v, = —(— VT -4V ——V .
aml 2 2
If v =ia, one has the following recursive relation f@a, m):

(m+ %)z—l—a2

ia, m).
m+1 ( )

(ja,m+1) =—
This asymptotic expansion is of a more restricted applicability than in the case of r
v, the reason being that the values(td, m) increase more rapidly than in the case of
real orders. Sequence transformations [21] may be used to improve the performanc
asymptotic series.
An error bound of the remainder in this expansion follows from [13]. We have fc
n=0,12,...

T 1/2 N n-1 (ia, m)
Kia(X) = (2)() e L; 207 + Ra@ x|, (15)

where the remainder satisfies the simple bound

|(ia, m)|

(+3)/x
[Ra(a, )| < 26 o

(16)

For a given paifa, x} and precisiorz, it is easy to check if a number can be found
such thatR,(a, X)| < .

Continued Fraction

The Bessel functiofK,(x) can be expressed in terms of confluent hypergeometric fun
tions. Ifz,(x) = U (v + % +n, 2v + 1, 2x), thenK, (x) can be written as

Ky (x) = m1/%(2x) e *20(x), (17)

where we consider purely imaginary orders- ia
The functionsz, satisfy the three-term recurrence relation

Zn_1(X) = bnzn(X) + @ny1Zn41(X), (18)
with
ani1=—[(N+1/2> —v?] by=2(n+Xx) (19)

from which a continued fraction representation for the ratitz, can be given:

Z1 1 a

=— ... 2
Zo b+ b+ (20)
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The evaluation ofy(x) can be made using the normalization condition ([19])

00 1 v+1/2
chzn = (g) s (22)

n=0
with
-1)"T(v+1/2+n)
= . 22
O = T Tw 2o (22)
Defining
S— i c 23)
n=1 %

we can evaluatey, by means of

1 v+1/2 1
(=) = 24
% (2x> 1+5 (24)

The successive terms in the sum (23) can be obtained from the successive approxima
the continued fraction (20). This scheme follows closely the one described in [15] and [2

The derivative can be obtained from the relation (3) and a relation between contigu
confluent hypergeometric functions. We get

K = 0O

1/2 + x + (v? — 1/4)% : (25)
wherez; /7, is evaluated through the CF (20).

Integral Representations

In [18] paths of steepest descent for the following integral representatidtig ©f) and
K/, (X) were given,

Kia(X) :/ e X cosht cosat dt, (26)
0
1 [ .
Ki/a(x) — _E / e X cosht+iat cosht dt. (27)
—00

Two cases have to be considered:

(@) 0 <a < x,x > 0(the monotonic case). In this case the appropriate steepest desc
path yields the integral representations ([18], Egs. (2.7) and (4.2)),

o0
Kia(x) — / efx cosht coso—ao dt, (28)

JO
1 [ (sinfsino — cosh
Ki/a(x) — é/ ( o T)efxcoshrcos(yfaa d'L’,

29
o coso (29)

wherea = x sin ¢ and sino = (sin 0 ;7).
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In applications, and also for numerical calculations (in particular when the pararaetel
or x are large), it may be important to normalize the integrals by splitting off the domina
exponential term at = 0. We have

Kia(X) = e~¢ /Ooo e X®*@ dr, (30)
Kla(x) = —e~* /OOO [cos@ - coshr — 1 -:Oijinz 20=9) ] e *@dr, (31)
where, because =0 if t =0,
& = xcosf + ab, (32)
and
@ (1) = xX[(coshr — 1) coso + (coso — cosh) + sinf (o — 6)]. (33)

To achieve stable computations for small valueg offle need to take care of the term
cosht — 1, which is quite simple, and &f — o. The latter follows from

. sing 2
sin(® — o) = 1—-—|. (34)
COSH ' + COSo sintf ¢

This requires, for example, a stable algorithm for computing sirhr for small values of
7, which is also easy to develop.

(b) 0 < x < a (the oscillatory case). The nonoscillating integral representations a
given by Egs. (3.3), (4.4), and the equation before (3.5)) in [18],

_ 00 d
Kia(X) = a”/zﬂ’t{e'x [/ e Vo <1+ [ £> dr
70
1 % dr
o —V() [ 7 H
71_6_2713/; € (da +I)da } (35)

Kiy(X) = —“/Zm{e—‘X[/ e YO (A(r) +iC(r)) dr

To

= / S e OB +i D(r))da] } (36)

- 1 — e—2ﬂa

wherey = xsinhu —au, 1o = u, coshu = &, 4 >0,
1
Y (t) = xcosht coso +al o — én , (37)

which differs from Eq. (3.4) in [18] by the last term, given that the faetd¥/? appears in
front of Egs. (35), (36), and

(t — p)coshp + sinh

Sino = -
sinht

(38)



404 GIL, SEGURA, AND TEMME
The functionsA(z), B(t), C(r), andD(t) are given by

A(t) = —coshr coso + sinh T sin ad—g, B(t) = A(r)d—t,
dr do

d d
C(r) = —sinht sino — cosht COSU—G, D(7) =C(r)—r.
dr do

The improper integrals can be straightforwardly computed in terms of the variable
by using a standard quadrature rule for improper integrals [14]. The only point to ta
into account is the accurate computation of the derivativédz, as we will discuss later.
The integrals over a finite interval present a series of numerical features which deser
careful analysis. Let us consider in detail the evaluation of the corresponding integrals
the functionKj, (x). For K/, (x) the same arguments apply.

Let us then consider the evaluation of

Kf — —ix 1
a(X)=-M\e ml (X)

5r/2 d
| (x) = 732 / e <’ + i) do,
Jr/2 do

with 7 related tar through Eq. (38). In principle one can as well evaluate the intdgsal
with respect tor which seems simpler than the integration with respeet wiven that

o can be directly obtained from by applying (38); see Fig. 1. However, the derivative
do/dt would appear in the integral, which goes to infinityras> 1, r1 being ther-value
corresponding te = 3w /2. Then it seems safer to integrate with respeet &ven if this
requires numerical inversion of (38). We will see how a combinationarido integration
will lead to a satisfactory implementation of the integtdk). Before this, let us again
rewrite the integral in a more suitable way for computation. By noticing that the function
relationt (o) defined by (38) is symmetric around 22,

(39)

1(31/2—-0) =1t(3n/2+0), (40)

o

o 2 4 =3 8 10
T

FIG. 1. Representation af as a function ot for u = 2.
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we can write

ar 31 /2 dr
I (X) = 2e’?a/ {sinhp — +icoshp| do, (41)
/2 dO'
with p = —x coshr coso + a(¥ — o).

As a first attempt, we can consider the evaluation of the integral with respecasat
stands. Both the function and the derivative

dr sink? 7 coso
do ~ (u — 1) coshr coshu — sinh( — 1)

(42)

are continuous and bounded in/R, 37 /2]. However, the derivative as expressed in (42) i
not suitable for numerical computation, given the vanishing of both the numerator and
denominatorwhea — 7/2 (and subsequentty— ). Anumerically sounder expression

for the derivative in the intervald/2, 37 /2] is

dr sinht \/m’ (43)

do  F(r — ) — coshyu coshe

with
E(r, ) = F(r — w)? = 1+ sinfP n(2F (r — ) — 1) + 2sinh(2u)G(2(t — w)) (44)
and

HngT& am:E%Fi. (45)

In this way, by considering an algorithm to evalu&tex) — 1 andG(x), the derivative can
be accurately computed when— u (6 — 7/2). Infact, we see thatr /do |p=r/2 = —1.

For integrating with respect 1®, we need to perform an accurate numerical inversion ¢
(38) for obtainingr (o). Hence, we should find the roots (givehof f () = sino sinht —

t coshu — sinhy + u coshu.

A simple analysis shows that given a positive value forosiff (t) has two roots, the
smallest one corresponding to values d [r/2, ] and the largest to [0r /2] (see Fig. 1).
As sino — 0% the largest root tends tboo and the smallest te — tanhy; on the contrary,
as sinoc — 1 the two roots approach each other, being the roat fer 7 /2, a double root.
For the numerical inversion of (38), solvifg r) = 0 near degenerate roots @as~ 7 /2)
is bad news, and one can expect difficulties in evaluating with high accuracy the ro
corresponding to € [7/2, 7].

Onthe other hand, for any fixed sin< 0, there is a single root df(z); this is as expected
given thatr (37/2 — 6) = t(37/2 + 0). Numerical inversion fot € [, 37 /2] does not
present any difficulty and one can, for instance, evaluate the roots for the diffesdyt
using a Newton method with starting valuér) = u — tanhu (later we will consider a
refinement of the method).

For the reasons explained above, we consider

() do 3n/2 do
I (X) = / (sinhp + i coshp —) dr +/ (sinhp— + i coshp ) do, (46)
T(/2) df T df
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which allows us to write

f e[ h hp 97
K, (X) = — CcoSy Ssin siny coshp —
ia(X) sinhra ~/utanhu( X p +siny 0 dr) T

3r/2 dr
— / <cosx sinhp do + siny coshp) do |, 47
- o

where, given a value aef in the second integral, we obtairby using a Newton method for
the functionf (). This numerical inversion can be done parallel to the integration, usir
as first starting valug — tanhu and subsequently using as starting values the previous
evaluated root. The sequences of roots obtained in this way form a decreasing sequen
values ofr for increasing values af in [, 37 /2]. Applying the successive Newton steps
in this way guarantees a fast convergence.

The evaluation oK/, (x) for the oscillatory case is very similar to the evaluation of
Kia(X). We start from the integral representation (36). Again, the improper integral can
evaluated as it stands, while the rest of integrals can be put into the form

¢ . efna/Z 3/2
Ky (X) = —%|e'x snhea //2 (B(t) coshp +iD(z) sinhp)do |, (48)

which gives

—ma/2 n
Ki/af (X) = se;nhna [/ﬂ (cosy coshp A(z) + siny sinhp C(t))dt

—tanhu

3r/2
— / (cosy coshp B(t) + siny sinhp D(t))do |. (49)

NUMERICAL DISCUSSION

We compare the different methods we have discussed for the evaluatiop(eh and
Ki,(X) (series expansion, continued fraction, asymptotic expansion, and nonoscillat
integral representation) for a precision of 20For this purpose, we compare the nonoscil-
lating integrals with the other approaches and the continued fraction with the series anc
asymptotic expansion. We will explicitly show the performance of the different approach
for Kja (x); for its derivative the same comparative results are found.

Figure 2 compares the results obtained via CF method and via series expansions.
region of coincidence is rather restricted, showing that the regions of validity are in sol
sense reciprocal. Series expansions are expected to work bettbeasmes smaller and
asa becomes larger; this fact can be understood from Eg. (9).

The range of validity of the continued fraction method is extended compared with the ¢
of real orders. The reason for this can be found in the expressia fewhen compared
to the real case (Eqg. (19)). The region of validity for the CF method is large enough
completely cover the region of validity of the asymptotic expansion for larg@mpare
Figs. 3 and 4). In fact, the asymptotic expansion is of more restricted applicability than
the case of real order, given that the coefficients in the expansion become greater, fora:
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Continued Fraction vs Series
140 B
120 B

100 B

o 20 40 60 80 100 120 140
X

FIG. 2. Comparison between the evaluationkf (x) via continued fraction and via series expansion for a
precision better than 18. Thex—a plane is scanned with point spacidg = 1, Ax = 1. The points where the
coincidence between both approaches is at least of nine significant digits are shown.

Continued Fraction vs A. Expansion

140 [ -

120 | B

100 | b

80 | ~

FIG. 3. Same as Fig. 2, but for the comparison between the evaluations via continued fraction and
asymptotic expansion. The points of coincidence within a precision better th&mrOplotted.

Integral vs Continued Fraction

140 |

120

100

80

60

o 20 40 60 80 100 120 140
x

FIG. 4. Comparison between the evaluations via continued fraction and via nonoscillating integral repres
tation. The points of coincidence for a precision better tharf &ée plotted.
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Integral vs Series

o z0 40 60 80 100 120 140
x

FIG.5. Comparison between the evaluations via series expansion and via nonoscillating integral represe
tion. The points of coincidence within a precision better thar? He plotted.

value of|v| whenv is purely imaginary (Eq. (9)). The use of the asymptotic expansion me
be of interest only for reasons of speed, when the expansion succeeds in giving enc
accuracy.

In Figs. 4 and 5 we compare the nonoscillating integrals with the CF method and se
expansions. The regions plotted are the regions of validity of series and CF method wt
are enough for an evaluation for 10precision forx < 60 (Fig. 8) and orders smaller than
200. For larger orders, underflow problems in the evaluation of the function appear whe
minimal number of 103%is permitted by the computer (usual restriction).

Numerical experiments show that the computation of all the integrals, except the intec
over 7, is well behaved and that Piessens’ algorithm for the improper integral togett
with a 20-point Gauss—Legendre quadrature forahiategral over finite intervals gives
an accuracy better than 10 However, ther-integral keeps the information regarding the
“singularity” of the integration path ag — 0 and asu becomes large, and we should
consider a higher order quadrature of this integral, in particular, near tha #ng (with
a > X). Inthe figures shown, we have scanned(thex) plane with regularly spaced points,
being the closest points to the lime= x those for whicka = x + 0.1. In this case, a 60-point
Gauss—Legendre for theintegration does the job for such points.

The problem with ther integral asa — x* comes from a very fast increase of the
integrand near the lower integration limit, and it is related to the peculiar limiting forr
of the integration path (see Figs. 6 and 7). Properly dividing the integration interval he
in improving the precision with less Gauss points. Integrating in terms dbes not
particularly help, given the problems that the numerical inversion in order to evalusate
would encounter. The integration path approaches the positeei-axis, and itis tempting
to believe that the problem is solved by first integrating ovén the interval x, +00),
and doing the rest of integration ower however, we need accurate numerical inversion ir
this last case. Given that the path for this last integration is almost a straight vertical |
(with t as the y axis) for any gives we have nearly the same valuerwfThis is a delicate
situation for accurately computing such values pparticularly for sine >~ 1, for which
there is nearly a double root.

In spite of the accuracy problems for the integrals in the oscillatory case wher,
we observe from Fig. 8 that the CF, together with the series expansion and the inte
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0.04 |

1.5 25 35 4.5
(o3

FIG. 6. Representation of as a function ot for u = 0.1.

representation for the oscillatory case, are enough to build an algorithm which give
precision of 10° for x < 100 and any real order, limited by an underflow number of0

(v ~ 200). This underflow takes place, for instance, when evaludtji§j2) for the series.
Similar problems happen for the integrals. With this restrictior(100) one can use the
CF and McLaurin series for the caae- x with a close tox (Fig. 8), therefore avoiding
the use of integrals in the conflictive region. A 20-point Gauss—Legendre is then suffici
to evaluate all integrals over finite intervals with an accuracy of10

Uniform asymptotic expansions could be considered for the computati$n 6f) when
the computations via CF, series, and integrals fail (large parameters, see Fig. 8). This
be discussed in a later paper.

Of course, in order to build an efficient algorithm, the speed of the different methods |
to be taken into account: In the region of coincidence of series and continued fraction, se
are faster (about a factor 2) than the continued fraction method. On the other hand, the s
of continued fraction and asymptotic expansion are similar in the region of coincidence
both approaches shown in Fig. 3. Finally, the speed of the calculation of the nonoscillat
integrals is slower than any of the other approaches; so, they have to be used only in
the other approaches fail to converge, as indicated in Fig. 8.

05 |

o

1.5 25 3.5 4.5
[o g

FIG. 7. Representation of as a function ot for u = 2.
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140

120

100

80

60

40

20

OO 20 40 60 80 100 120 140

x

FIG. 8. Regions where the different approaches are applied for an accuracy ‘ofskdies expansion (s),
continued fraction method (CF), and integrals (l). The lines x andx = 100 are also shown. The unshaded
region is covered by integrals, except for a tiny region above thaliaex. In the region of coincidence of series
and CF, series converge faster. Series, the integral representation for the oscillatory case and the CF methc
enough to comput&;, (x) with a precision of 16° whenx < 100.

In summary, the different methods of computation for a precision better thariri the
region of parameters & a < 200, 0< x < 100, are the following:

1. Series for moderate. A fit to Fig. 8 shows that series can be used when x?/40.

2. Continued fraction method for moderatéVhenx > a?/110, we use the CF method
if series cannot be applied.

3. Integral representations are used in the rest of the parameter space, in particula
integral for the oscillatory case.
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