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The evaluation of the modified Bessel function of the third kind of purely imagi-
nary orderKia(x) is discussed; we also present analogous results for the derivative.
The methods are based on the use of Maclaurin series, nonoscillatory integral rep-
resentations, asymptotic expansions, and a continued fraction method, depending
on the ranges ofx anda. We discuss the range of applicability of the different ap-
proaches considered and conclude that power series, the continued fraction method,
and the nonoscillatory integral representation can be used to accurately compute the
functionKia(x) in the range 0≤ a ≤ 200, 0≤ x ≤ 100; using a similar scheme the
derivativeK ′ia(x) can also be computed within these ranges.c© 2002 Elsevier Science (USA)
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INTRODUCTION

The modified Bessel functions of the third kind of purely imaginary orderKia(x) appear
in the radial solution of the Schroedinger equation for exponential potentialsV(r ) = V∞ −
Ae−r/a [2, 11], with r the distance from the center of force, and in the calculation of
quantum mechanical cross sections and reaction rates for electron impact excitation of ions
and neutrals [2]. Also, the Dirichlet problem with boundary conditions on a wedge is solved
in terms of integrals which require the evaluation ofKia(x) for a wide range of positivex
anda [12]. Besides,Kia(x) is the kernel of the Kantorovich–Lebedev transform [12] and
plays an important role as approximant in uniform asymptotic expansions of solutions of
certain second-order linear differential equations [5, 6].

In the literature several approaches to the evaluation ofKia(x) can be found ([2, 3,
7, 9–11]), which are mainly based on integral representations. In [16] theτ -method is
used for computing the related functionK1/2+iβ(x), with x, β ∈ (0, 10]. A major problem

398

0021-9991/02 $35.00
c© 2002 Elsevier Science (USA)

All rights reserved.



EVALUATION OF K -BESSEL FUNCTION 399

when using integral representations ofKia(x) is the control of the relative accuracy. The
function becomes exponentially small whenx and/ora become large, and the standard
integrals oscillate strongly. In [11] an approach is discussed based on shifting the contour of
integration into the complex plane, which gives some control on the cancellations. We base
our quadrature method on integrals obtained by the saddle point method (see [18]), which
do not oscillate. Moreover, the dominant exponential terms that describe the asymptotic
behavior ofKia(x) are explicitly present in the representations we are using.

In this paper, we discuss methods based on the use of series expansions, continued
fractions, and nonoscillatory integral representations, depending on the ranges ofx and
a and the numerical efficiency of the different approaches. We develop algorithms for
computing the functionKia(x) andK ′ia(x), aiming at a relative precision of nine significant
digits, in the range 0≤ a ≤ 200, 0≤ x ≤ 100.

COMPUTATIONAL ASPECTS

Our method of evaluation ofKia(x) andK ′ia(x) is based on:

1. Series expansions for moderate values ofx/a,
2. Asymptotic expansions for large values ofx,
3. A continued fraction method for moderate values ofa/x, and
4. Nonoscillatory integral representations where all the three previous methods fail.

Let us now describe in detail each of these approaches. Later, we will describe the regions
of numerical validity and the performance of the combined algorithm.

Series Expansion

Series expansions forKia(x)andK ′ia(x)can be built which properly handle the singularity
at x = 0. The idea, as in [19], is to relateKν(x) with Iν(x) by

Kν(x) = π

2 sin(πν)
[ I−ν(x)− Iν(x)] (1)

and use series expansions for theI functions to obtain the expression

Kν(x) =
∞∑

k=0

ck fk, (2)

which together with

K ′ν(x) =
ν

x
Kν(x)− Kν+1(x) (3)

gives

K ′ν(x) =
2

x

∞∑
k=0

ck

[
k fk − rk

2

]
, (4)

where

fk = π

2 sinνπ

[
(x/2)−ν

0(k+ 1− ν) −
(x/2)ν

0(k+ 1+ ν)
]
, (5)

rk = πν

2 sinνπ

[
(x/2)−ν

0(k+ 1− ν) +
(x/2)ν

0(k+ 1+ ν)
]
, (6)
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and

ck =
(

x2

4

)k 1

k!
= x2

4

ck−1

k
. (7)

The following three-term recurrence relation forrk can be established:

(k2− ν2)rk − (2k− 1)rk−1+ rk−2 = 0. (8)

The same recurrence relation applies forfk. Perron’s theorem [8, 17] is inconclusive with
respect to the existence of minimal solutions for this recurrence. We are using such a
recurrence to evaluate the coefficientsrk and then we use

fk = k fk−1+ rk−1

k2− ν2
= k fk−1+ rk−1

k2+ a2
, (9)

where we have setν = ia. Notice that the evaluation of the coefficients for imaginaryν is
not so restricted as in the case of realν. For realν, singularities in Eqs. (5), (6), and (9) are
present which disappear for imaginaryν. For real orders, these series expansions converge
for |ν| < 1 [19]; there is no such restriction for imaginaryν.

In order to evaluaterk and fk, one needs the starting values:f0, r0, andr1. Settingν = ia
we have

f0 = − π

2i sinhπa

[
(x/2)ia

0(1+ ia)
− (x/2)−ia

0(1− ia)

]
. (10)

Writing

0(1+ ia) = |0(1+ ia)|eiσ0(a), 0(1− ia) = |0(1− ia)|e−iσ0(a), (11)

whereσ0(a) is the Coulomb phase shift [4], we get

f0 =
√

π

a sinhπa
sin[a ln(x/2)− σ0(a)], (12)

and similarly

r0 =
√

πa

sinhπa
cos[a ln(x/2)− σ0(a)],

r1 = 1

1+ a2

√
πa

sinhπa
{cos[ln(x/2)− σ0(a)] + a sin[a ln(x/2)− σ0(a)]}. (13)

For the computation ofσ0, one can use the parameterization given in [4].

Asymptotic Expansion

For large values ofx, one has the asymptotic expansion

Kν(x) ∼
(
π

2x

)1/2

e−x
∞∑

k=0

(ν,m)

(2x)m
, (14)
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where(ν,m) is the Hankel symbol given by

(ν,m) = 1

πm!
(−1)m cosνπ0

(
1

2
+ ν +m

)
0

(
1

2
− ν +m

)
.

If ν = ia, one has the following recursive relation for(ia,m):

(ia,m+ 1) = −
(
m+ 1

2

)2+ a2

m+ 1
(ia,m).

This asymptotic expansion is of a more restricted applicability than in the case of real
ν, the reason being that the values of(ia,m) increase more rapidly than in the case of
real orders. Sequence transformations [21] may be used to improve the performance of
asymptotic series.

An error bound of the remainder in this expansion follows from [13]. We have for
n = 0, 1, 2, . . .

Kia(x) =
(
π

2x

)1/2

e−x

[
n−1∑
k=0

(ia,m)

(2x)m
+ Rn(a, x)

]
, (15)

where the remainder satisfies the simple bound

|Rn(a, x)| ≤ 2e(a
2+ 1

4)/x |(ia, n)|
(2x)n

. (16)

For a given pair{a, x} and precisionε, it is easy to check if a numbern can be found
such that|Rn(a, x)| < ε.

Continued Fraction

The Bessel functionKν(x) can be expressed in terms of confluent hypergeometric func-
tions. If zn(x) = U (ν + 1

2 + n, 2ν + 1, 2x), thenKν(x) can be written as

Kν(x) = π1/2(2x)νe−xz0(x), (17)

where we consider purely imaginary ordersν = ia
The functionszn satisfy the three-term recurrence relation

zn−1(x) = bnzn(x)+ an+1zn+1(x), (18)

with

an+1 = −[(n+ 1/2)2− ν2] bn = 2(n+ x) (19)

from which a continued fraction representation for the ratioz1/z0 can be given:

z1

z0
= 1

b1+
a2

b2+ . . . . (20)
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The evaluation ofz0(x) can be made using the normalization condition ([19])

∞∑
n=0

Cnzn =
(

1

2x

)ν+1/2

, (21)

with

Cn = (−1)n

n!

0(ν + 1/2+ n)

0(ν + 1/2− n)
. (22)

Defining

S=
∞∑

n=1

Cn
zn

z0
, (23)

we can evaluatez0 by means of

z0 =
(

1

2x

)ν+1/2 1

1+ S
. (24)

The successive terms in the sum (23) can be obtained from the successive approximants to
the continued fraction (20). This scheme follows closely the one described in [15] and [20].

The derivative can be obtained from the relation (3) and a relation between contiguous
confluent hypergeometric functions. We get

K ′ν(x) = −
Kν(x)

x

[
1/2+ x + (ν2− 1/4)

z1

z0

]
, (25)

wherez1/z0 is evaluated through the CF (20).

Integral Representations

In [18] paths of steepest descent for the following integral representations ofKia(x) and
K ′ia(x) were given,

Kia(x) =
∫ ∞

0
e−x cosht cosat dt, (26)

K ′ia(x) = −
1

2

∫ ∞
−∞

e−x cosht+iat cosht dt. (27)

Two cases have to be considered:

(a) 0≤ a ≤ x, x > 0 (the monotonic case). In this case the appropriate steepest descent
path yields the integral representations ([18], Eqs. (2.7) and (4.2)),

Kia(x) =
∫ ∞

0
e−x coshτ cosσ−aσ dτ , (28)

K ′ia(x) =
1

2

∫ ∞
−∞

(sin θ sin σ − coshτ)

cosσ
e−x coshτ cosσ−aσ dτ , (29)

wherea = x sin θ and sinσ = (sin θ τ
sinh τ ).
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In applications, and also for numerical calculations (in particular when the parametersa
or x are large), it may be important to normalize the integrals by splitting off the dominant
exponential term atτ = 0. We have

Kia(x) = e−ξ
∫ ∞

0
e−x8(τ) dτ , (30)

K ′ia(x) = −e−ξ
∫ ∞

0

[
cosθ + coshτ − 1+ 2 sin2 1

2(θ − σ)
cosσ

]
e−x8(τ) dτ, (31)

where, becauseσ = θ if τ = 0,

ξ = x cosθ + aθ, (32)

and

8(τ) = x[(coshτ − 1) cosσ + (cosσ − cosθ)+ sinθ(σ − θ)]. (33)

To achieve stable computations for small values ofτ we need to take care of the term
cosht − 1, which is quite simple, and ofθ − σ . The latter follows from

sin(θ − σ) = sinθ

cosθ τ
sinhτ + cosσ

[
1− τ 2

sinh2 τ

]
. (34)

This requires, for example, a stable algorithm for computing sinhτ − τ for small values of
τ , which is also easy to develop.

(b) 0< x < a (the oscillatory case). The nonoscillating integral representations are
given by Eqs. (3.3), (4.4), and the equation before (3.5)) in [18],

Kia(x) = e−aπ/2<
{

e−iχ

[∫ ∞
τ0

e−9(τ)
(

1+ i
dσ

dτ

)
dτ

− 1

1− e−2πa

∫ 5π
2

π
2

e−9(τ)
(

dτ

dσ
+ i

)
dσ

]}
(35)

K ′ia(x) = e−aπ/2<
{

e−iχ

[∫ ∞
τ0

e−9(τ)(A(τ )+ iC(τ )) dτ

− 1

1− e−2πa

∫ 5π
2

π
2

e−9(τ)(B(τ )+ i D(τ )) dσ

]}
, (36)

whereχ = x sinhµ− aµ, τ0 = µ, coshµ = a
x , µ > 0,

9(τ) = x coshτ cosσ + a

(
σ − 1

2
π

)
, (37)

which differs from Eq. (3.4) in [18] by the last term, given that the factore−aπ/2 appears in
front of Eqs. (35), (36), and

sin σ = (τ − µ) coshµ+ sinhµ

sinh τ
. (38)
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The functionsA(τ ), B(τ ), C(τ ), andD(τ ) are given by

A(τ ) = −coshτ cosσ + sinh τ sin σ
dσ

dτ
, B(τ ) = A(τ )

dτ

dσ
,

C(τ ) = −sinhτ sin σ − coshτ cosσ
dσ

dτ
, D(τ ) = C(τ )

dτ

dσ
.

The improper integrals can be straightforwardly computed in terms of the variableτ

by using a standard quadrature rule for improper integrals [14]. The only point to take
into account is the accurate computation of the derivativedσ/dτ , as we will discuss later.
The integrals over a finite interval present a series of numerical features which deserve a
careful analysis. Let us consider in detail the evaluation of the corresponding integrals for
the functionKia(x). For K ′ia(x) the same arguments apply.

Let us then consider the evaluation of

K f
ia(x) = −<

[
e−iχ 1

1− e−2πa
I (x)

]
(39)

I (x) = e−πa/2
∫ 5π/2

π/2
e−9(τ)

(
dτ

dσ
+ i

)
dσ,

with τ related toσ through Eq. (38). In principle one can as well evaluate the integralI (x)
with respect toτ which seems simpler than the integration with respect toσ given that
σ can be directly obtained fromτ by applying (38); see Fig. 1. However, the derivative
dσ/dτ would appear in the integral, which goes to infinity asτ → τ1, τ1 being theτ -value
corresponding toσ = 3π/2. Then it seems safer to integrate with respect toσ even if this
requires numerical inversion of (38). We will see how a combination ofτ andσ integration
will lead to a satisfactory implementation of the integralI (x). Before this, let us again
rewrite the integral in a more suitable way for computation. By noticing that the functional
relationτ(σ ) defined by (38) is symmetric around 3π/2,

τ(3π/2− θ) = τ(3π/2+ θ), (40)

FIG. 1. Representation ofσ as a function ofτ for µ = 2.
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we can write

I (x) = 2e−
3π
2 a
∫ 3π/2

π/2

[
sinhρ

dτ

dσ
+ i coshρ

]
dσ, (41)

with ρ = −x coshτ cosσ + a( 3π
2 − σ).

As a first attempt, we can consider the evaluation of the integral with respect toσ as it
stands. Both theρ function and the derivative

dτ

dσ
= sinh2 τ cosσ

(µ− τ) coshτ coshµ− sinh(µ− τ) (42)

are continuous and bounded in [π/2, 3π/2]. However, the derivative as expressed in (42) is
not suitable for numerical computation, given the vanishing of both the numerator and the
denominator whenσ → π/2 (and subsequentlyτ → µ). A numerically sounder expression
for the derivative in the interval [π/2, 3π/2] is

dτ

dσ
= sinhτ

F(τ − µ)− coshµ coshτ

√
E(τ, µ), (43)

with

E(τ, µ) = F(τ − µ)2− 1+ sinh2µ(2F(τ − µ)2− 1)+ 2 sinh(2µ)G(2(τ − µ)) (44)

and

F(x) = sinhx

x
, G(x) = F(x)− 1

x
. (45)

In this way, by considering an algorithm to evaluateF(x)− 1 andG(x), the derivative can
be accurately computed whenτ → µ (σ → π/2). In fact, we see thatdτ/dσ |σ=π/2 = −1.

For integrating with respect toσ , we need to perform an accurate numerical inversion of
(38) for obtainingτ(σ ). Hence, we should find the roots (givenσ ) of f (τ ) = sinσ sinhτ −
τ coshµ− sinhµ+ µ coshµ.

A simple analysis shows that given a positive value for sinσ , f (τ ) has two roots, the
smallest one corresponding to values ofσ in [π/2, π ] and the largest to [0, π/2] (see Fig. 1).
As sinσ → 0+ the largest root tends to+∞ and the smallest toµ− tanhµ; on the contrary,
as sinσ → 1 the two roots approach each other, being the root forσ = π/2, a double root.
For the numerical inversion of (38), solvingf (τ ) = 0 near degenerate roots (asσ → π/2)
is bad news, and one can expect difficulties in evaluating with high accuracy the roots
corresponding toσ ∈ [π/2, π ].

On the other hand, for any fixed sinσ < 0, there is a single root off (τ ); this is as expected
given thatτ(3π/2− θ) = τ(3π/2+ θ). Numerical inversion forσ ∈ [π, 3π/2] does not
present any difficulty and one can, for instance, evaluate the roots for the differentσs by
using a Newton method with starting valueτ(π) = µ− tanhµ (later we will consider a
refinement of the method).

For the reasons explained above, we consider

I (x) =
∫ τ(π)

τ(π/2)

(
sinhρ + i coshρ

dσ

dτ

)
dτ +

∫ 3π/2

π

(
sinhρ

dσ

dτ
+ i coshρ

)
dσ, (46)
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which allows us to write

K f
ia(x) =

e−πa/2

sinhπa

[∫ µ

µ−tanhµ

(
cosχ sinhρ + sinχ coshρ

dσ

dτ

)
dτ

−
∫ 3π/2

π

(
cosχ sinhρ

dτ

dσ
+ sinχ coshρ

)
dσ

]
, (47)

where, given a value ofσ in the second integral, we obtainτ by using a Newton method for
the function f (τ ). This numerical inversion can be done parallel to the integration, using
as first starting valueµ− tanhµ and subsequently using as starting values the previously
evaluated root. The sequences of roots obtained in this way form a decreasing sequence of
values ofτ for increasing values ofσ in [π, 3π/2]. Applying the successive Newton steps
in this way guarantees a fast convergence.

The evaluation ofK ′ia(x) for the oscillatory case is very similar to the evaluation of
Kia(x). We start from the integral representation (36). Again, the improper integral can be
evaluated as it stands, while the rest of integrals can be put into the form

K ′ f
ia (x) = −<

[
e−iχ e−πa/2

sinhπa

∫ 3π/2

π/2
(B(τ ) coshρ + i D(τ ) sinhρ) dσ

]
, (48)

which gives

K ′ f
ia (x) =

e−πa/2

sinhπa

[∫ µ

µ−tanhµ
(cosχ coshρ A(τ )+ sinχ sinhρ C(τ )) dτ

−
∫ 3π/2

π

(cosχ coshρ B(τ )+ sinχ sinhρ D(τ )) dσ

]
. (49)

NUMERICAL DISCUSSION

We compare the different methods we have discussed for the evaluation ofKia(x) and
K ′ia(x) (series expansion, continued fraction, asymptotic expansion, and nonoscillating
integral representation) for a precision of 10−9. For this purpose, we compare the nonoscil-
lating integrals with the other approaches and the continued fraction with the series and the
asymptotic expansion. We will explicitly show the performance of the different approaches
for Kia(x); for its derivative the same comparative results are found.

Figure 2 compares the results obtained via CF method and via series expansions. The
region of coincidence is rather restricted, showing that the regions of validity are in some
sense reciprocal. Series expansions are expected to work better asx becomes smaller and
asa becomes larger; this fact can be understood from Eq. (9).

The range of validity of the continued fraction method is extended compared with the case
of real orders. The reason for this can be found in the expression foran+1 when compared
to the real case (Eq. (19)). The region of validity for the CF method is large enough to
completely cover the region of validity of the asymptotic expansion for largex (compare
Figs. 3 and 4). In fact, the asymptotic expansion is of more restricted applicability than for
the case of real order, given that the coefficients in the expansion become greater, for a same
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FIG. 2. Comparison between the evaluation ofKia(x) via continued fraction and via series expansion for a
precision better than 10−9. Thex–a plane is scanned with point spacing1a = 1,1x = 1. The points where the
coincidence between both approaches is at least of nine significant digits are shown.

FIG. 3. Same as Fig. 2, but for the comparison between the evaluations via continued fraction and via
asymptotic expansion. The points of coincidence within a precision better than 10−9 are plotted.

FIG. 4. Comparison between the evaluations via continued fraction and via nonoscillating integral represen-
tation. The points of coincidence for a precision better than 10−9 are plotted.
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FIG. 5. Comparison between the evaluations via series expansion and via nonoscillating integral representa-
tion. The points of coincidence within a precision better than 10−9 are plotted.

value of|ν|whenν is purely imaginary (Eq. (9)). The use of the asymptotic expansion may
be of interest only for reasons of speed, when the expansion succeeds in giving enough
accuracy.

In Figs. 4 and 5 we compare the nonoscillating integrals with the CF method and series
expansions. The regions plotted are the regions of validity of series and CF method which
are enough for an evaluation for 10−9 precision forx < 60 (Fig. 8) and orders smaller than
200. For larger orders, underflow problems in the evaluation of the function appear when a
minimal number of 10−300 is permitted by the computer (usual restriction).

Numerical experiments show that the computation of all the integrals, except the integral
over τ , is well behaved and that Piessens’ algorithm for the improper integral together
with a 20-point Gauss–Legendre quadrature for theσ integral over finite intervals gives
an accuracy better than 10−9. However, theτ -integral keeps the information regarding the
“singularity” of the integration path asµ→ 0 and asµ becomes large, and we should
consider a higher order quadrature of this integral, in particular, near the linea = x (with
a > x). In the figures shown, we have scanned the(a, x) plane with regularly spaced points,
being the closest points to the linea = x those for whicha = x + 0.1. In this case, a 60-point
Gauss–Legendre for theτ integration does the job for such points.

The problem with theτ integral asa→ x+ comes from a very fast increase of the
integrand near the lower integration limit, and it is related to the peculiar limiting form
of the integration path (see Figs. 6 and 7). Properly dividing the integration interval helps
in improving the precision with less Gauss points. Integrating in terms ofσ does not
particularly help, given the problems that the numerical inversion in order to evaluateτ(σ )

would encounter. The integration path approaches the positiveσ semi-axis, and it is tempting
to believe that the problem is solved by first integrating overτ in the interval [µ,+∞),
and doing the rest of integration overσ ; however, we need accurate numerical inversion in
this last case. Given that the path for this last integration is almost a straight vertical line
(with τ as the y axis) for any givenσ we have nearly the same value ofτ . This is a delicate
situation for accurately computing such values ofτ , particularly for sinσ ' 1, for which
there is nearly a double root.

In spite of the accuracy problems for the integrals in the oscillatory case whena ' x,
we observe from Fig. 8 that the CF, together with the series expansion and the integral
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FIG. 6. Representation ofτ as a function ofσ for µ = 0.1.

representation for the oscillatory case, are enough to build an algorithm which gives a
precision of 10−9 for x < 100 and any real order, limited by an underflow number of 10−300

(ν ∼ 200). This underflow takes place, for instance, when evaluatingf0 (12) for the series.
Similar problems happen for the integrals. With this restriction (x < 100) one can use the
CF and McLaurin series for the casea > x with a close tox (Fig. 8), therefore avoiding
the use of integrals in the conflictive region. A 20-point Gauss–Legendre is then sufficient
to evaluate all integrals over finite intervals with an accuracy of 10−9.

Uniform asymptotic expansions could be considered for the computation ofKia(x)when
the computations via CF, series, and integrals fail (large parameters, see Fig. 8). This will
be discussed in a later paper.

Of course, in order to build an efficient algorithm, the speed of the different methods has
to be taken into account: In the region of coincidence of series and continued fraction, series
are faster (about a factor 2) than the continued fraction method. On the other hand, the speed
of continued fraction and asymptotic expansion are similar in the region of coincidence of
both approaches shown in Fig. 3. Finally, the speed of the calculation of the nonoscillatory
integrals is slower than any of the other approaches; so, they have to be used only in case
the other approaches fail to converge, as indicated in Fig. 8.

FIG. 7. Representation ofτ as a function ofσ for µ = 2.
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FIG. 8. Regions where the different approaches are applied for an accuracy of 10−9: series expansion (s),
continued fraction method (CF), and integrals (I). The linesa = x andx = 100 are also shown. The unshaded
region is covered by integrals, except for a tiny region above the linea = x. In the region of coincidence of series
and CF, series converge faster. Series, the integral representation for the oscillatory case and the CF method, are
enough to computeKia(x) with a precision of 10−9 whenx < 100.

In summary, the different methods of computation for a precision better than 10−9 in the
region of parameters 0< a < 200, 0< x < 100, are the following:

1. Series for moderatex. A fit to Fig. 8 shows that series can be used whena > x2/40.
2. Continued fraction method for moderatea. Whenx > a2/110, we use the CF method

if series cannot be applied.
3. Integral representations are used in the rest of the parameter space, in particular the

integral for the oscillatory case.
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